
TECH SPOTLIGHT

BY JORDAN SEGALL & ABHI SHARMA >

Serverless Technology
Technology is always evolving. Some advances make us turn our heads, but others rise above

and fundamentally change the way we live and work. In this series we highlight an emerging

technology that we believe has an unrivaled opportunity for startups.

Table of Contents

INTRODUCTION	 3

Background	 4

What is serverless technology?	 4

Adoption rates	 4

The serverless community	 5

HOW SERVERLESS WORKS	 6

Origins	 6

Fundamental pillars 	 7

Use case: Photo sharing	 8

BENEFITS OF SERVERLESS	 12

Big cost savings 	 12

Improved developer experience	 13

Reduced overhead	 13

New marketplaces	 13

BARRIERS TO ADOPTION	 14

Performance	 15

Expressibility	 18

Operational monitoring and testing	 19

Deployment	 20

Vendor lock-in	 20

Security and privacy	 21

Runtime limitations	 21

Confusing costs	 22

Duration 	 22

Memory	 22

Additional costs	 22

CURRENT MARKET LANDSCAPE	 23

Platforms: Refinery.io	 27

Monitoring, logging,

and debugging: Dashbird	 27

Deployment: Stackery	 27

Security: Protego	 27

CLOSING THOUGHTS	 28

CONTACT	 29

TECH SPOTLIGHT - SERVERLESS TECHNOLOGY  |  UNUSUAL VENTURES  |  3

Introduction

At Unusual Ventures, we believe serverless computing is the next wave of cloud computing and the
next iteration of microservice-based architectures. We are excited to see what technologies emerge to
better enable developers to leverage serverless within their organizations.

Just like the rise of cloud computing that allowed hundreds of successful startups to enhance
functionality, we are seeing startups today built on top of serverless platforms like AWS Lambda
Functions, Microsoft Azure Functions, and Google Cloud Functions.

We believe the serverless movement is just getting started and that it’s going to be big.

Define serverless technology

and its evolution

Why it is an exciting (yet relatively early)

emerging space

Why serverless may not be the best fit

for a given application

The barriers preventing it from mass

adoption today

Examples of serverless companies that are

paving the way for future adoption

Overview

TECH SPOTLIGHT - SERVERLESS TECHNOLOGY  |  UNUSUAL VENTURES  |  4

Background

What is serverless technology?

Serverless technology is not the absence of servers, but the absence of having to worry or even think
about them. It transfers the management of servers and underlying operational infrastructure away from
busy developers and over to established cloud / service providers.

This means developers no longer have to worry about time-consuming software deployment concerns
like provisioning, utilization, scalability, fault-tolerance, and monitoring. Serverless raises the level of
programming abstraction to a point that the data center becomes the computer. This is an incredibly
powerful idea—one that comes with exciting opportunities and systems challenges.

Adoption rates

Many companies have started this adoption. For the past two years, serverless technology has
emerged as the fastest-growing service among public cloud services1.

2019 State of Serverless Technology

1 Source: RightScale’s 2019 State of the Cloud Report

50%

36%

39%

growth in adoption

currently using serverless technology

are experimenting with it (behind only machine learning (48%) and IoT (41%)).

TECH SPOTLIGHT - SERVERLESS TECHNOLOGY  |  UNUSUAL VENTURES  |  5

The serverless community

Companies across industries like Netflix, AutoDesk, Nordstrom, and Thomson Reuters have already
adopted serverless as major parts of their architecture. In turn, they have experienced both significant
cost reductions and ease of development and maintenance.

Usage of serverless technology over time2

45%

82%

 of respondents said they were using serverless at work in some capacity in 2017

of respondents said they were using serverless at work in 2018

Importance of serverless at work

 2 Source: 2018 Serverless Community Survey: Huge Growth in Serverless Usage

https://serverless.com/blog/2018-serverless-community-survey-huge-growth-usage

TECH SPOTLIGHT - SERVERLESS TECHNOLOGY  |  UNUSUAL VENTURES  |  6

How serverless works

Origins

The evolution of computing from a server infrastructure standpoint can be summarized at a high
level as transitioning from physical servers in data centers, to virtual servers in data centers, to virtual
servers in the cloud.

Each progressive step offers numerous advantages, such as higher utilization, faster provisioning,
elastic resourcing, reduced infrastructure maintenance, hardware independence, increased availability,
and trading CAPEX to OPEX.

These advantages were at the heart of the cloud computing revolution, but significant challenges
remain. Notably, practitioners must still select and administer instances, manage capacity and
utilization, control scalability, enable fault tolerance, and monitor systems. Severless, the next step in
this evolution, aims at alleviating these responsibilities completely. With serverless, services provision,
scale, and monitor automatically.

3 Source: “Serverless Computing: Redefining the Cloud”, Roger Barga, Serverless Conf 2017

https://www.serverlesscomputing.org/wosc17/presentations/barga-keynote-serverless.pdf

TECH SPOTLIGHT - SERVERLESS TECHNOLOGY  |  UNUSUAL VENTURES  |  7

Fundamental pillars

FaaS (Functions-as-a-Service) or BaaS (Backend-as-a-Service) are fundamental pillars of serverless
computing. You can think of FaaS as the computer model and BaaS as the storage model that enables
serverless computing.

In this worldview, a traditional monolithic codebase is broken up into individual functions that are
executed independently in the cloud. In essence, serverless/FaaS hinges upon an “event-driven”
application structure that spins up servers on demand. As a result, resources are only allocated when
these events trigger “functions”.

Examples of serverless events/triggers could be arrival of data, passage of time, upstream call, cron job,
state change in a workflow, file upload to blob stores, or streaming events. Triggers can also occur via
incoming HTTP API requests, which are handled by an API Gateway and routed to an appropriate function.

Since servers are de-allocated when function execution ends, any state that is created inside a function
has to be externalized outside of the FaaS instance to be persisted for future usage. This externalized
persistence is handled by BaaS, the other pillar of serverless, which offers persistence abstractions as an
API. Popular serverless providers are Amazon, Google, and Microsoft.

TECH SPOTLIGHT - SERVERLESS TECHNOLOGY  |  UNUSUAL VENTURES  |  8

Use case: Photo sharing

Underlying process

As a simple example, imagine you want to enable a machine learning classifier to tell if any new image
uploaded to your S3 bucket is a cat or dog. In serverless architecture, the upload to S3 is the event
trigger, which activates a function called processImage(), which allocates a server instance to execute
the actual processImage() function, which is then deallocated when processImage finishes executing.

If you wanted to store your prediction result, you would need to go to a storage mechanism like BaaS,
utilized as another API/function call, most likely outside of the instance that was just instantiated to
execute processImage(). Otherwise, the result of processImage() would disappear at the end of the
function’s execution.

Diving further into how serverless architectures differ from traditional setups, consider a simple
architecture without serverless for a photo sharing application.

A client makes a request on the internet, with a load balancer that appropriately forwards the request
to a server (e.g., an EC2 Instance) that is managed by an autoscaler and contains code for various
application functionality (find friends, searching for or posting photos, etc). The server then sends the
results (e.g., a photo or relationship adding a friend) to a database for storage.

TECH SPOTLIGHT - SERVERLESS TECHNOLOGY  |  UNUSUAL VENTURES  |  9

The developer’s role

The developer has many tasks in creating and maintaining this architecture. They need to properly
administer security updates across multiple environments, install packages, and maintain configuration files.

They also need to specify to AWS the parameters of the EC2s they would like to use, such as the number
of cores for memory and CPU, and set rules on the Elastic Load Balancer regarding how to monitor
environments for provisioning new servers and what thresholds to scale up or down. The server in this
architecture handles a wide range of responsibilities, such as authentication and searching.

These tasks not only take time, but can also have a drastic effect on the performance of the
product. Purchasing too many CPUs will drain a business’s cash. On the other hand, having strict
auto-scaling thresholds or purchasing server capabilities below your requirements will provide a
poor customer experience.

TECH SPOTLIGHT - SERVERLESS TECHNOLOGY  |  UNUSUAL VENTURES  |  10

Basic architecture

Now, let’s consider a very basic serverless architecture of our photo sharing application.

The first important difference to note is the decoupling of serverless architectures. The responsibilities
of the server previously (e.g., authentication) have been delegated to a standalone managed
microservice, while database functionality has been broken into disparate subsets that specific
functions have access to.

TECH SPOTLIGHT - SERVERLESS TECHNOLOGY  |  UNUSUAL VENTURES  |  11

While the server was the central orchestration mechanism in our prior architecture governing all facets
of the product, here the responsibilities are broken into constituent components responsible for a
specific task in a microservice-oriented manner.

Instead of a load balancer, an API Gateway controls incoming requests and—based on the event
activated—triggers a particular function in place of an EC2 instance.

You’ll also notice that the client and functions are accessing the same databases. While it is not normally
the case that all databases are accessible by both the backend and the client, it is more common in
serverless architectures for some of the previously server side logic to be implemented on the client
side instead (e.g., reading from a database to render content to a user).

Finally, since functions are instantiated upon demand, developers no longer need to make decisions
regarding EC2 requirements and autoscaling threshold.

TECH SPOTLIGHT - SERVERLESS TECHNOLOGY  |  UNUSUAL VENTURES  |  12

Benefits of serverless

Big cost savings

The single biggest benefit of serverless technology that makes it so popular is cost savings. As more
companies adopt the cloud, there is a greater need to optimize cloud costs. In fact, optimizing cloud
cost has been the most important initiative and active responsibility of IT teams for the last three years5.

Before we go further, it is important to understand how serverless technology providers like AWS Lambda
charge users. Since developers no longer have to worry about provisioning servers, they no longer have
to pay for servers even when the servers are not running. Instead, they pay purely for function execution at
a millisecond level, along with the memory allocated for the function upon being triggered.

Since compute and runtime fees are limited to actual usage, companies can experience significant
savings with serverless.

Large scale examples

Companies like Netflix use AWS Lambda to serve seven billion hours of video every quarter. (You can
imagine the difficulties of scaling up Netflix’s architectures for Stranger Things releases without serverless.)

Migrating to serverless pays off

65%

96%

cost savings for Coca Cola

96% cost savings for Postlight

Cloud server providers are incentivized to offer such pricing models because they want to achieve business
growth, maximize utilization, and provide efficient resource allocation. Making the cloud easier to develop
upon ultimately attracts more customers and helps existing customers use more cloud services.

5 Source: RightScale’s 2019 State of the Cloud Report

TECH SPOTLIGHT - SERVERLESS TECHNOLOGY  |  UNUSUAL VENTURES  |  13

Improved developer experience

The second major benefit is an improved developer experience (in some areas at least—we’ll touch
more on this later).

Serverless makes API versioning trivial—just spin up a new function for a new API version. Horizontal
scaling is now as simple as letting cloud providers manage application spikes and downtime.

Patching security updates is also simplified, as the application has been broken down into flexible
and independent components. This not only allows for easier application maintenance, but also
ease of deployment time and resources and greater flexibility in innovating and building upon
serverless architectures.

Reduced overhead

The third major benefit is a direct result of the first two. Companies no longer have to focus resources
on managing infrastructure and deployment complexity. The operational headache is eliminated and
companies can instead optimize upon product development and user experience.

New marketplaces

Finally, a fourth major benefit is introducing a new marketplace based on functions (FaaS). Developers
could offer a domain-specific function in the marketplace, which could be utilized by other app
builders. The efficiency and feature richness of each function will drive its price and adoption.

BENEFITS OF SERVERLESS

TECH SPOTLIGHT - SERVERLESS TECHNOLOGY  |  UNUSUAL VENTURES  |  14

Barriers to adoption

Overview

“The simple stuff isn’t always easy. I wanted to do something very straightforward—to write a simple

python function that would react to an API call and get information from DynamoDB. The function

was about 3 lines of code…but Amazon has made this very painful…I got to the point of trying to do

things directly with the Amazon stack that made me want to throw my monitor out the window.”

- Sam Newman, Instructor of Migrating Microservices to serverless—Understanding serverless Technology

and Addressing serverless Concerns

Serverless technology has a lot of promise and can even be seen as the natural direction of computing.
After all, there is an increasing trend of developers off-shoring capabilities to third-party managed services
so they can focus on product development. Which begs the question—why not do it for servers?

While the space continues to evolve and startups emerge around each of these areas, the very premise
behind serverless creates a number of issues.

A Serverless.com survey reports that the largest barriers to entry include best practices, lack of tooling,
startup latency, and lack of knowledge, while the largest challenges reported from respondents include
expressibility, debugging, monitoring, and testing.

http://serverless.com

TECH SPOTLIGHT - SERVERLESS TECHNOLOGY  |  UNUSUAL VENTURES  |  15

Performance

The most important consideration in adopting serverless technology is overcoming performance issues
related to speed, overhead and parameter limitations.

Unreliable performance

The first major issue of serverless is the fact that it can be very unpredictable or downright slow for a
variety of reasons.

Reshuffle (formerly Binaris) notes that invocation responses from the cloud providers are guaranteed at
the 99th percentile, meaning 99 out of 100 responses are guaranteed to be within a specific timeframe,
which is not viable for use cases like gaming, ad bidding, AR, and industrial IoT that require consistent
guarantees of responses within a set amount of milliseconds.

This is an active area of research in both academia and industry. Binaris also built an opensource tool
called FaaSmark to measure function latencies across platforms, demonstrating significant variations in
performance across major cloud providers.

GOOGLE

AZURE
IBM

100 ms

10 ms

1 ms
0 6 h 12 h 18 h 24 h

BINARIS

AWS

Source: Reshuffle (formerly Binaris)

 After measuring latency across cloud providers, there’s approximately a 100ms latency difference
between Google and Binaris. Providers Azure, IBM and AWS land somewhere in between for speed,
but most have much wider ranges of variability.

BARRIERS TO ADOPTION

6 Source: Binaris Blog: Serverless at Scale Serving StackOverflow like Traffic

https://blog.binaris.com/serverless-at-scale/

TECH SPOTLIGHT - SERVERLESS TECHNOLOGY  |  UNUSUAL VENTURES  |  16

Stateless and
communication overhead

Stateless components must interact with stateful components to persist information, which can
introduce latency and complexity.

In traditional architectures, application components that must speak to one another can be co-
located within the same server or rack or instance or use optimized network protocols to reduce
latency. Therefore, the co-location of both compute and data in traditional architectures can deliver
optimization that is more difficult with serverless.

A serverless architecture composition is merely a set of functions that deliver desired semantics, so
there isn’t a guarantee they are co-located. This actually increases communication overhead.

Currently, inter-component communication is generally done via HTTP, RPC, or some Shared Message
Queue, which is an order of magnitude slower than shared memory or local messages on the same
compute server.

Loss of control

By using serverless, developers are limited to a small number of configuration parameters—namely
memory size—with far less control over JVM or operating system runtime parameters, leading to
performance issues.

Tests have been done running on FaaS providers, where identically configured functions have
drastically different performance characteristics as a result of cloud providers altering scheduling
priorities and resource allocations in response to demand. Language runtimes also differ drastically in
cold start time, with Java often several seconds longer than Python.

BARRIERS TO ADOPTION

TECH SPOTLIGHT - SERVERLESS TECHNOLOGY  |  UNUSUAL VENTURES  |  17

Cold starts

Perhaps the most frequent complaint amongst the serverless opposition is the idea of Cold Starts.

When an event triggers, the FaaS provider (e.g., AWS Lambda) spins up a container, loads all code
and dependencies in memory, and then runs the function inside to eventually deallocate the container.
In reality, this container is “kept alive” and sits idle for a period of time awaiting additional requests
(minutes or hours).

The instantiation of the container from the first function called is referred to as a “Cold Start”, while
proceeding function executions occur while the container is “Warm”. The problem here is that
execution of cold functions are drastically slower than warm functions—many times on the orders of
seconds when compared to milliseconds for warm functions.

How developers deal

There are two ways that developers attempt to deal with the problem of cold starts today,
hacks and suboptimal.

The first is to repeatedly call their function every few minutes to continually keep their containers warm.
However, the problem with this is that there are concurrency limits stipulated by the major cloud
providers to prevent the number of instances serving requests from becoming too high. Furthermore,
these warm containers maintain their connections to external databases, and thus, the databases
themselves can suffer from concurrency issues from warm functions.

The second method is to increase the memory allocation parameter for your function, as AWS allocates
CPU to functions in proportion to the memory. For example, a function allocated 256MB of RAM will
receive 2x the CPU processing from AWS than a 128MB function. As a result, developers will allocate
more memory than necessary to functions in order to bolster performance. However, this too is a
suboptimal solution. While allocating 3GB of memory to a function requiring 128MB may mitigate cold
start latencies, it does not help reduce costs for the much more numerous warm executions occurring.

BARRIERS TO ADOPTION

TECH SPOTLIGHT - SERVERLESS TECHNOLOGY  |  UNUSUAL VENTURES  |  18

Expressibility

While serverless technology has come a long way, it doesn’t yet have the fine tuned controls of some
more established technologies. This results in higher latencies and inefficient data dependencies.

Fine grained storage and coordination operations

Any non-trivial application ultimately always needs fine grained state sharing and a means for task
coordination or sequencing.

While more cloud storage services offer scalable long-term storage, they tend to be ill-equipped to
handle fine-grained access needs, resulting in high access cost and high latencies.

Storage services that might help to manage or preserve state don’t come with notification or
coordination services out of the box, forcing application developers to implement a notification/
rendezvous system using services. This adds both latency and complexity.

Data dependencies

Serverless platforms today do not inherently provide a mechanism to express data dependencies
between functions, which would assist the serverless service provider on resource allocation. As a result,
this can lead to suboptimal infrastructure allocation and communication overhead for the application.

Function cost analysis tooling

With serverless, developers do not have to think about latency, scalability, and fault-tolerance from a
server infrastructure point of view.

Instead, developers must concern themselves with functions, carefully considering execution time and
the resources each uses. Unlike various static analysis tools that exist today, there is a dearth in powerful
tooling that ties one’s code and runtime execution through a single lens to provide insight into cost.
This is important because you still pay for server time even when an execution thread is waiting.

BARRIERS TO ADOPTION

TECH SPOTLIGHT - SERVERLESS TECHNOLOGY  |  UNUSUAL VENTURES  |  19

Operational monitoring and testing

While serverless certainly helps mitigate certain parts of the developer experience—namely removing
infrastructure maintenance—it does not help in many other areas.

Testing

Local testing is a foremost problem for serverless today.

Since infrastructure is abstracted away in a serverless setting, incorporating production-like error
handling, logging, performance, and scaling characteristics is notoriously difficult in a local
environment.

Testing remotely is also inherently difficult due to the unpredictable nature of serverless container
instances. Testing is only limited to individual functions, as opposed to overall application testing.

Debugging

There are few services available to remotely debug serverless compute components like traditional run-
time debuggers with line-by-line stepping. Unlike traditional architectures, one cannot simply log into
an EC2 instance to discover what went wrong.

Monitoring & logging

Serverless monitoring and logging services require more work. AWS Lambda/CloudWatch
functionalities are quite poor, and monitoring issues and metrics across a distributed system of
hundreds of functions is a pain point today.

As a result, many developers use AWS console or a CLI with significant code written to manage functions,
since stitching together various cloud provider components and services requires substantial work.

BARRIERS TO ADOPTION

TECH SPOTLIGHT - SERVERLESS TECHNOLOGY  |  UNUSUAL VENTURES  |  20

Deployment

Today, it is difficult to orchestrate large-scale serverless applications due to being composed of many
individual components.

Even deploying a simple “Hello World” function requires bundling dependencies, establishing
connections to API Gateway and stateful databases, managing config files, and numerous other tasks.

An illustration of the difficulties in deployment for serverless revolves around package dependencies.
Lambda functions are zipped into a file and deployed to the FaaS provider, where the FaaS makes the
functions accessible via HTTP requests from triggers.

As a result, users must download and configure all dependencies before delivering them to a server, as
opposed to relying on a dependency manager. Furthermore, many NPM packages are not compatible
with serverless architectures.

Vendor lock-in

As is the case with cloud providers, employing a specific serverless architecture may lock-in customers
with a particular vendor, or result in substantial code rewriting. Enabling hybrid serverless models across
multi-cloud environments is still a work in progress.

BARRIERS TO ADOPTION

TECH SPOTLIGHT - SERVERLESS TECHNOLOGY  |  UNUSUAL VENTURES  |  21

Security and privacy

As with any new technology, there are many concerns from the security community. Examples include:
event-data injection to functions, applying authentication to hundreds of functions, function permission
and role management, and inadequate function monitoring and logging tools. Israeli Security Firm
PureSec found 1 in 5 of 1,000 serverless applications audited held critical vulnerabilities7.

The context for privacy considerations is even trickier. Unlike security attacks where the crux is to
manipulate intent, in the case of privacy even the context of data or the sequence of function calls might
reveal sensitive private data. For example, in the case of a health-care monitoring product, a sequence of
function calls may reveal certain predilections about the patient.

Runtime limitations

Each cloud provider has limits on the amount of time any function can execute for before timing out, as
well as a memory limit developers can request for a given function.

AWS Lambda
Microsoft
Azure Functions

Google
Cloud Function

Runtime Limit 15 minutes 10 minutes 9 minutes

Memory Limit 3008 MB 1536 MB 2048 MB

BARRIERS TO ADOPTION

7 SOURCE: Network World: One in five serverless apps has a critical security vulnerability

https://www.networkworld.com/article/3268415/one-in-five-serverless-apps-has-a-critical-security-vulnerability.html

TECH SPOTLIGHT - SERVERLESS TECHNOLOGY  |  UNUSUAL VENTURES  |  22

Confusing costs

While serverless can lead to significant cost savings, it can also be prohibitively costly when not
used appropriately and difficult to understand how to optimize due to charges made by a number of
invocations, duration of invocations, and size (memory) allocated for each invocation.

Duration

AWS charges in increments of 100ms—if a function runs for 102 ms, AWS will charge for 200ms of
runtime. Lambda also charges for function duration even if the function is waiting for another microservice
to complete IO, and thus functions calling functions can create cascading wait times.

Memory

Memory scales proportionally to cost—a 128MB function is half the cost of a 256MB function. However,
CPU resources are also allocated proportionally based on memory size.

Users must employ optimization strategies on a per function basis; for example, a 110ms / 128MB
invocation cost is rounded to 200ms, but increasing the memory to 192MB could speed up I/O
operations and reduce execution time to below 100ms to save 25% per invocation. Thus, figuring out
what memory size to use for each function becomes a time intensive and costly operation.

Additional costs

There are additional costs built into the many microservices associated with ensuring lambda works, such
as API Gateway, CloudWatch, background processors like SNS/SQS/Kinesis, data transfers, etc.

Cloudwatch is a required service that automatically logs start, end, and report messages for each function,
creating costs even if one uses an alternative aggregation service across all microservice logging.

BARRIERS TO ADOPTION

TECH SPOTLIGHT - SERVERLESS TECHNOLOGY  |  UNUSUAL VENTURES  |  23

Current market landscape

The serverless market map below consists of startups, open source packages, and large company
offerings in areas with the greatest needs and resources being invested.

To better illustrate the current landscape, we have featured one startup from each category in further
detail below. Our choice of which startups to highlight is NOT reflective of our evaluation of these
companies as investments or as leaders in their categories, but to provide a better picture of the types
of startups emerging in the serverless space.

*We included the “Users” subsector for completeness—not as an area of emerging serverless startups.

Platforms

PLATFORMS

TOOLING

Deployment

Monitoring, logging, and debugging

Security

USERS*

TECH SPOTLIGHT - SERVERLESS TECHNOLOGY  |  UNUSUAL VENTURES  |  24

Platforms

Refinery.io
Refinery.io allows developers to create serverless applications by abstracting away the underlying
infrastructure pertaining to serverless.

Using a drag and drop editor with underlying
primitives, developers can link together Code
Blocks, API Endpoints, and API Response Blocks
to easily create functional web endpoints built
on serverless.

With Refinery, developers no longer need
to deal with the complexities of coding with
lambdas or to even understand Serverless at all,
but use abstractions of various cloud services,
lambdas, API Gateway, jobs, and queues.

In addition to easily creating serverless functions,
Refinery’s platform aims to tackle several other
common grievances of using lambda today.

Charges for compute used and not idle servers
waiting for lambdas to execute

Serverless Map Reduce to distribute workload
across thousands of servers

Visual debugging and logging systems to
follow execution flow of deployed services

CASE STUDY

TECH SPOTLIGHT - SERVERLESS TECHNOLOGY  |  UNUSUAL VENTURES  |  25

Monitoring, logging, and debugging

Dashbird
Dashbird has over 1000 companies using its product and 3,400 AWS accounts connected to its
service. The product is only compliant with AWS Lambda and Java/Node.js/Go/Python, though it’s a
popular offering.

Dashbird provides a product for monitoring
operations across serverless deployments.
Today, it is difficult to understand lambda
function errors and microservice malfunctions in
real-time in such distributed architectures, and
many developers believe AWS CloudWatch has
poor log-search and reporting capabilities.

Dashbird can be set up in minutes with zero
code changes by deploying a preconfigured
CloudFormation template and provides:

Visualizations such as total invocation counts,
errors, cost, billed durations, and memory
utilization, as well as Cold Start detection and
impact analyses

Alerts for anomalies and potential issues
(e.g., functions approaching memory limits,
increased # of timeouts, approaching timeout
limits, etc.)

Detailed tracing analyses and stack traces for
function errors; searching capabilities for logs,
metrics, and traces, including elastic search for
AWS Lambda logs

AI based recommendations for memory setting
changes to speed up systems and function
optimizations to cut costs (e.g., detecting over
or under provisioned lambda functions)

Integration with Slack, email, and other
systems to notify of alerts in real-time

CASE STUDY

TECH SPOTLIGHT - SERVERLESS TECHNOLOGY  |  UNUSUAL VENTURES  |  26

Deployment

Stackery
Stackery provides a combined visualization tool and CLI to build and deploy serverless architectures
consistently across development, testing, and production environments.

Its visualization dashboard is its core
differentiator from competitors in the space. It
provides a drag and drop tool to create cloud
side development environments and functions,
and link them to events and stateful databases.

It also emulates the architecture locally in an
IDE for increased development speed, where
it manages service-to-service permissions and
configurations between both local and
cloud resources.

Accelerated development by enabling iteration
in sections. Tools accelerate development by
up to 60x with rapid deployment

Visualization of complete architecture and
local cloud-testing capabilities

Collaboration tools including rollback
protection, automated build packaging,
GitHub integration, and partnerships with
serverless monitoring tools like Epsagon

CASE STUDY

TECH SPOTLIGHT - SERVERLESS TECHNOLOGY  |  UNUSUAL VENTURES  |  27

Security

Protego
Protego provides security for serverless applications from deployment to runtime. The platform can get
up and running in 20 minutes, and supports the major cloud providers and functions written in Node.js,
Python, and Java.

Existing security solutions focus on a small number
of entry points, whereas serverless infrastructures
expose hundreds of functions as entry points.
Protego’s web-based SaaS application:

Continuously scans an application to create a
model of the application functioning normally,
and uses deep learning to surface threats,
anomalies, and malicious attacks

Examines architectures for potentially
dangerous interactions between functions and
microservices; provides a comprehensive view
of serverless ecosystem, visualizing all inputs,
triggers, and risk areas

Runtime protection mechanism to inspect and
filter function-input data

Automatically detects configuration risks and
generates least-privilege function permissions
during CI/CD

Helps manage vulnerabilities of 3rd party
libraries, and adapts security level applied
to serverless resources to minimize resource
consumption while ensuring protection

Visualizations of data points relevant to a
particular security event with audit trails

Automatically detects and mitigates SQL
Injections and anomalous activities (e.g.,
calling external destinations or sub-processe)

CASE STUDY

TECH SPOTLIGHT - SERVERLESS TECHNOLOGY  |  UNUSUAL VENTURES  |  28

Closing thoughts

We’re still in the early innings of serverless technology. While companies like Netflix, AutoDesk,
Nordstrom, Thomson Reuters, and others are early adopters, there are many companies not using it
(or entirely unaware of its existence) and others who are using it in production for only small, non-
critical parts of their applications.

Even so, serverless has come a long way since AWS Lambda launched in November 2014. There are
more serverless providers than ever before and the space is continuing to evolve at a rapid pace.

In the same way that the rise of cloud computing enabled hundreds of successful startups to be built
upon the major providers’ architectures and enable ease of usage and enhanced functionality, we’re
seeing startups built on top of AWS Lambda Functions, Microsoft Azure Functions, and Google
Cloud Functions.

While there are interesting startups in all of the categories described previously, we at Unusual Ventures
believe that noteworthy areas of opportunity include tackling the issues of security and improved
storage options that allow for reduced latency and stateful workloads on serverless, as well as solutions
that assist developers in mapping out serverless architecture. We believe the serverless movement
is just getting started and that it’s going to be big. Serverless computing could become the de-facto
programming model in the next stage of the cloud era.

The serverless community is steadily growing, with popular solutions like Serverless Inc at 30,000+
Github stars, and once the main barriers to entry are mitigated—namely ease of deployment, enhanced
monitoring and security tools, reduced latency, and additional storage solutions—serverless will see a
surge in adoption.

At Unusual, we anticipate a migration over time in the enterprise toward distributed architectures
and increased adoption of serverless in the future, and we are excited to be supporters of the
serverless movement.

TECH SPOTLIGHT - SERVERLESS TECHNOLOGY  |  UNUSUAL VENTURES  |  29

Contact

If you think serverless is interesting, are working on unusual tech (serverless or otherwise),
or simply want to chat, we want to hear from you. You can follow us on Twitter, Connect on
LinkedIn, or just shoot us an email.

Jordan Segall

@jordan_segall
jordan@unusual.vc

Abhi Sharma

@abhisharma_b
abhi@relyance.ai

https://www.linkedin.com/in/jordan-segall-7b938632/
mailto:jordan%40unusual.vc?subject=
https://www.linkedin.com/in/abhisharmab/
mailto:abhi%40relyance.ai?subject=

